Saturday, 11 April 2020

Concept of Set Theory For Class-XI


 SET THEORY






     Set:-A set is a well-defined distinct collection of objects. 
              It is denoted by capital letters A,B,C,D,...... etc.

    Representations:- There are two methods of representing a set  
          1.Roaster or Tabular form:-In this form we list the elements within a curly bracket and                                                                        separated by commas. 
                                                          eg:-A = {3, 4, 5, 6, ... , 100}
          2. Set builder form:-In this form we list the elements by their property or properties.
                                             eg:-A = {y : y = x + 2, x ∈ N}
  Types of Set
         1.Empty /Null/Void set :- A set which does not contain any element is called the empty
                                                    set or the void set or null set.
                                                   It is denoted by { } or ⱷ (phai).
         2. Finite and infinite sets:-  A set which consists of a finite number of elements is
                                                       called a finite set otherwise, the set is called an infinite set.
         3. Singleton set :- A set having only one element is called Singleton set.
         4. Pair set :-A set having exactly two element is called 
         5. Equal sets:- Two sets A and B are said to be equal(A=B), if every elements of A is also an                                        element of B and if every element of B is also an element of A.
         6.Equivalent set :- . Two sets A and B are said to be equivalent if n(A)=n(B).
Subsets:-  A set A is said to be a subset of set B if every element of A is also an
                          element of B. 
                               In symbols we write A B if a A a B.
          Superset:- If  B then B is called superset of A.
        
          Note:-Notation
                  1. set of real numbers is denoted by R
                  2.set of natural numbers is denoted by N
                  3.set of integers  is denoted by Z
                  4.set of rational numbers is denoted by Q
                  5.set of irrational numbers is denoted by T
          We observe that
                   N Z Q R  and T R, Q T, N T

 Intervals as subsets of R Let a, b R and a < b. Then
         (a) An open interval denoted by (a, b) is the set of real numbers {x : a < x < b}
         (b) A closed interval denoted by [a, b] is the set of real numbers {x : a x b)
         (c) A closed open interval denoted by [ab) is the set of real numbers { b}
         (d) An open closed interval denoted by (ab] is the set of real numbers{ b}
        
 Power set:- The collection of all subsets of a set A is called the power set of A.
                      It is denoted by P(A). 
            Note:-If the number of elements in A = n , i.e., n(A) = n, then the
                      number of elements in P(A) = nth power of 2
 Universal set :- The superset of all given sets is called Universal Set.
                               It is denoted by U.
Operations on sets
          1.Union of Sets : The union of any two given sets A and B is the set which consists
                                       of all those elements which are either in A or in B. 
                                        It is denoted by  B
          In symbols, we write A B = {x | x A or x B}
      
             Venn Diagram
                         


          Some properties
          (i) A B = B A
          (ii) (A B) C = A (B C)
          (iii) A   = A 
          (iv) A A = A
           (v) U A = U

        2.Intersection of sets: The intersection of two sets A and B is the set which
                                            consists of all those elements which belong to both A and B.
                                                     It is denoted by A ∩ B
                        In symbols  A ∩ B = {x : x A and x B}.
            
            Venn diagram
              
            Some properties
            (i) A ∩ B = B ∩ 
           (ii) (A ∩ B) ∩ C = A ∩ (B ∩ C)
           (iii)  A =  
           (iv) U ∩ A = A 
            (v) A ∩ A = A
           (vi) A ∩ (B  C) = (A ∩ B)  (A ∩ C)
           (vii) A  (B ∩ C) = (A  B) ∩ (A  C)
       3.Disjoint Sets:- When A ∩ B =, then A and B are called disjoint sets.
              Venn Diagram
                    
        4.Difference of sets :-The difference of two sets A and B is the set of elements which belong to                                               A but not to B.
                                             It is denoted by A – B
                               In symbols A – B = {x : x A and x B}
                                         Also, B – A = { x : x B and x A}
                    Venn Diagram
                       

         5.Complement of a set:- Let U be the universal set and A a subset of U. Then the
                                                  complement of A is the set of all elements of U which are not the                     elements of A.
                                                 It is denoted by A′ 
                  In symbols, A′ = {x : x U and x A}. 
                             Also A′ = U – A
                   Venn Diagram
                          
                 Some properties
               (i) Law of complements:
                    (a) A A′ = U (b) A ∩ A′
               (ii) De Morgan’s law
                    (a) (A B)′ = A′ B′ 
                    (b) (A ∩ B)′ = A′ B′
               (iii) (A′ )′ = A
               (iv) U′  and = U
      
            5.Symmetric Difference of two sets:-The symmetric difference of two sets A and B is                                                                                     denoted by AΔB, is defined as 
AΔB=(A-B)U(B-A) 

Formulae to solve practical problems on union and intersection of two sets
            Let A, B and C be any finite sets. Then
        (a) n (A B) = n (A) + n (B) – n (A ∩ B)
        (b) If (A ∩ B) =, then n (A B) = n (A) + n (B)
        (c) n (A B C) = n (A) + n (B) + n (C) – n (A ∩ B) – n (A ∩ C) – n (B ∩ C) + n (A ∩ B ∩ C)